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Abstract
Detection of data races in Java programs remains a difficult
problem. The best static techniques produce many false pos-
itives, and also the best dynamic techniques leave room for
improvement. We present a new technique called race di-
rected scheduling that for a given race candidate searches
for an input and a schedule that lead to the race. The search
iterates a combination of concolic execution and schedule
improvement, and turns out to find useful inputs and sched-
ules efficiently. We use an existing technique to produce a
manageable number of race candidates. Our experiments on
23 Java programs found 72 real races that were missed by the
best existing dynamic techniques. Among those 72 races, 31
races were found with schedules that have between 1 million
and 108 million events, which suggests that they are rare and
hard-to-find races.

Categories and Subject Descriptors D.2.5 Software Engi-
neering [Testing and Debugging]

Keywords concurrency; race detection

1. Introduction
Concurrent programming with shared memory offers both
the benefit of efficient execution and the pitfall of data races.
Efficiency can be achieved when we let multiple processors
run in parallel and exchange data via the shared memory. A
data race arises when two processes simultaneously access a
shared memory location and at least one of the two accesses
is a write operation. Data races often result in hard-to-detects
bugs and usually the programmers of concurrent software
should try to avoid data races.

One reason for why data races are problematic can be
found in a seminal paper by Adve, Hill, Miller, and Netzer
[10]. Their observation is that on suitable hardware, every
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execution of a data-race-free program is sequentially consis-
tent. Sequential consistency was introduced by Lamport in
1979 and means that “the result of any execution is the same
as if the operations of all the processors were executed in
some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by
its program” [31]. Sequential consistency provides a useful
memory model that simplifies the task of producing correct
concurrent programs. If programmers can avoid data races,
they can use sequential consistency as their memory model.

Researchers have developed many techniques to help pro-
grammers detect data races. Some of those techniques re-
quire program annotations that typically must be supplied by
a programmer; examples include [9, 15]. Other techniques
work with unannotated programs and thus they are easier
to use. In this paper we focus on techniques that work with
unannotated Java programs. We use 23 open-source bench-
marks that have a total of more than 4.5 million lines of code,
which we use “straight of the box” without annotations.

We can divide race-detection techniques into three cate-
gories: static, dynamic, and hybrid. A static technique exam-
ines the text of a program without running it; a dynamic tech-
nique runs a program, possibly multiple times, and gathers
information during those executions; and a hybrid technique
does both.

The advantage of a static technique is that if it is sound,
then it will report every possible race, though it may also
report false positives. We will show via experiments that the
best existing static technique reports a large number of false
positives that would be daunting to examine by hand. For
our benchmarks, the Chord tool [34] reports a total 127,136
data races. So, current static techniques are of little use to
working programmers. Potentially, a sound static technique
can be valuable, particularly because if it reports zero races
for a benchmark then indeed that benchmark has no races.

The advantage of a dynamic technique is that it reports
only real races. For example, for our benchmarks, the Fast-
Track, Goldilocks, RaceFuzzer, and Pacer tools together re-
port a total 304 data races. So, current dynamic techniques
give programmers valuable help, yet our experiments show
that they leave many races to be discovered.

The advantage of a hybrid technique is that it may be able
to combine the best of both worlds, static and dynamic. The



best existing hybrid technique appears to be a technique by
O’Callahan and Choi [35] that we call Hybrid, which for
our benchmarks report a total 405 data races. This technique
may produce both false positives and false negatives, yet the
tool provides programmers with output of a fairly manage-
able size.

In this paper we focus on dynamic techniques. We will
present a dynamic technique that reports significantly more
real races than the previous techniques.

The main shortcoming of the existing dynamic tech-
niques is that when they search for an execution that leads
to a real race, they often come up empty handed. We present
a novel approach to execution search that gives much better
results. The central concept in our approach is the standard
notion of schedule, which is a sequence of events that must
be executed in order.

The challenge. Find an execution that leads to a real race.

Our result. We present race directed scheduling that for
given a race candidate searches for an input and a schedule
that lead to the race. The search iterates a combination of
concolic execution and schedule improvement.

We have implemented race directed scheduling in a tool
called Racageddon that does race detection for Java pro-
grams. We use an existing hybrid technique to produce a
manageable number of race candidates.

For our benchmarks, our tool found 72 real races that
were missed by the best existing dynamic techniques. Among
the 304 real races found by the existing dynamic techniques,
our technique found 272 of them. Our tool is fully automatic
and its user needs no expertise on data races. Once our tool
reports a race, our tool can replay the execution that leads to
the race.

In summary, the two main contributions of this paper are:

• an effective and useful dynamic race detector and
• an experimental comparison of seven race detectors.

The rest of the paper. In the following section we discuss two
techniques from previous work that we use as “black-box”
components of Racageddon. In Section 3 we present our new
approach, in Section 4 we present our experimental results,
and in Section 5 we discuss related work.

2. Two Techniques from Previous Work
Racageddon uses two techniques from previous work [35,
41]. In both cases, Racageddon uses those techniques as
“black boxes”, that is, as unmodified components for which
we rely only on their input-output behavior. We imple-
mented both techniques ourselves after a careful study of
the seminal papers [35, 41].

Generation of race candidates. We use a hybrid race de-
tector by O’Callahan and Choi [35] that we call Hybrid. Hy-
brid combines lockset-based detection and happens-before-
based detection into a single efficient technique that can pro-

duce both false positives and false negatives. We view the
output of Hybrid as race candidates that deserve further at-
tention. Hybrid provides a rather small number of race can-
didates, namely a total of 405 for our benchmarks of more
than 4.5 million lines of code. Those 405 race candidates are
an excellent starting point for our search for real races.

Schedule improvement. We use an approach to schedule
improvement by Said, Wang, Yang, and Sakallah [41]. Their
method maps a schedule to a permutation of the schedule.
The idea is that a user supplies both a schedule that repre-
sents a trace of a program execution and also a race can-
didate, and then in return gets a schedule that has a better
chance to lead to the race. The method has “memory”: it
takes advantage of the schedules that have been submitted
in all previous calls. Together, all those schedules provide
a wealth of information about happens-before relationships
in a specific program. The method uses an SMT-solver and
is highly efficient, even for the schedules of lengths beyond
length 108 that we encountered in our experiments.

3. Race Directed Scheduling
We now present our approach to data race detection. We will
use pseudo-code to describe both our approach and the data
types that we use.

3.1 Data Types
Here are six data types that we use in Racageddon.

Program = a Java 6 program
Input = input to a Java 6 program
Event = threadId× statementLabel

EventPair = Event× Event
Schedule = Event sequence

Race = EventPair × Input× Schedule

Racageddon works for Java 6 programs, which have the
type Program. The input to such programs is a vector of
values; we use Input to denote the type of input vectors.

When a program execution executes a particular state-
ment in a particular thread, we refer to that as an event that
has type Event. In the context of race detection, the key data
type is EventPair that we use to describe two events that may
form a race.

The standard notion of schedule is here the data type
Schedule, which is a sequence of events.

A Race is the type of information that we need to replay
an execution that leads to a race. A Race has three compo-
nents, namely the EventPair that is the race, the Input that
we should supply at the beginning of the execution, and the
Schedule that the execution should follow to reach the race.

3.2 Two Tools
Let us describe the interfaces to the two off-the-shelf tools
from Section 2 in terms of the data types listed above.

hybrid : Program→ (EventPair set)
improve : (Schedule× EventPair)→ (Schedule⊕ {none})



Here hybrid stands for O’Callahan and Choi’s technique,
while improve stands for Said, Wang, Yang, and Sakallah’s
technique. Notice that hybrid maps a Java program to a
set of event pairs, that is, a set of race candidates. Notice
also that improve maps a schedule to a better schedule or
else to none if no better schedule was found. We leave
implicit that improve has “memory” and takes advantage of
the schedules that have been submitted in all previous calls.
Notice finally that improve is idempotent in the sense that if
improve(trace, c) 6= none, then

improve(improve(trace, c), c) = improve(trace, c)

3.3 Concolic Execution
Racageddon uses concolic execution as one of its compo-
nents. We will summarize the idea of concolic execution and
we will introduce a slight generalization of the approach that
we use in Racageddon.

Concolic execution [17, 18, 27, 32, 45–48], executes code
with concrete and symbolic values simultaneously and uses
the result to generate inputs for another execution. The term
“concolic” combines the words “concrete” and “symbolic”.
Each execution collects constraints from the symbolic values
and the conditions in the control-flow. Those constraints
represent the executed control-flow path and they have the
concrete input to the run as solution.

Suppose we want to execute a particular event, that is, a
particular statement in a particular thread. We can execute
a sequence of concolic runs that successively get closer and
closer to execute the desired event. The idea is to do a minor
modification of the constraints collected from conditions of
branches. Imagine that a prefix of the concolic run made
progress towards the desired event but at a particular branch
B went off in a direction that appears to lead away from
the desired event. We take the constraints from the prefix
plus the negation of B. The solution to those constraints is
an input that will steer the next concolic execution a little
closer to the desired event by going off in the other direction
at branch B.

Experience shows that concolic execution achieves bet-
ter branch coverage with fewer test cases than testing with
random inputs. In the first round of concolic execution, the
input is chosen randomly.

We can generalize the standard approach to pursue ex-
ecution of an entire schedule, that is, an event sequence.
For example, suppose we want execution of the schedule
(e1, e2, e3). Some rounds of concolic execution may lead to
execution of e1. We can refer to those rounds together as a
super-round. Now we can use the constraints that lead to ex-
ecution of e1 and continue with a second super-round that
leads to execution of first e1 and later e2. Finally, we can
do a third super-round and achieve execution of the entire
schedule.

The above method generalizes easily to schedules of any
length.

If we manage to execute an entire given schedule, we
continue to explore additional schedules that have the given
schedule as prefix.

We describe our interface to concolic execution in the
following way.
concolic : (Program× Schedule)→

((Race set)× Schedule)

The input to concolic is a program and a schedule, and
concolic will execute one super-round per element in the
schedule. A run of concolic has two outputs. The first out-
put is a set of all races that were found by any of the in-
dividual concolic executions. The second output is a sched-
ule that represents the trace of final concolic execution, irre-
spectively of whether the given schedule was executed. We
emphasize that each call to concolic may do many concolic
executions, hence have many opportunities to collect races.

3.4 Helper functions
We use three helper functions:

present : (EventPair × Schedule)→ boolean
swap : (Race set)→ (Race set)
] : ((Race set)× (Race set))→ (Race set)

Informally, present checks that the two elements of an
event pair occur consecutively in a schedule. Additionally,
swap makes a change to each element ((e′, e′′), v, s) of a
race set, namely to swap e′ and e′′ both in the first compo-
nent of the triple and also where they first occur consecu-
tively in s. Finally, ] does something akin to a union of two
race sets, namely to do the union based only on the event
pair of each race. We will maintain the invariant that for a
given c ∈ EventPair, a race set contains at most one race of
the form (c, v, s). The idea of X ] Y is that if X contains a
race of the form (c, v′, s′), and Y contains a race of the form
(c, v′′, s′′), then X ] Y will, somewhat arbitrarily, contain
the first race (c, v′, s′) (and leave out (c, v′′, s′′)). Formally,

present((e′, e′′), (e1, . . . , en)) ={
true if ∃i : e′ = ei ∧ e′′ = ei+1

false otherwise

swap(X) =
{ ((e′′, e′), v, (e1, . . . , ei−1, ei+1, ei, ei+2, . . . , en)) |
((e′, e′′), v, (e1, . . . , en)) ∈ X ∧
i ∈ 1..(n− 1) is the smallest index such that:

e′ = ei ∧ e′′ = ei+1 }
For everyX ∈ (Race set), we assume that if (c′, v′, s′) ∈ X
and (c′′, v′′, s′′) ∈ X and c′ = c′′, then v′ = v′′ and s′ = s′′.
The following definition of ] maintains this property.

X ] Y = X ∪ { ((e′, e′′), v, s) ∈ Y |
∀(ex, vx, sx) ∈ X : ex 6= (e′, e′′) }

3.5 Racageddon Overview
Racageddon iterates a combination of concolic execution
and schedule improvement. We begin with a run of hybrid



to produce candidate races and then we do two phases of
search for races. In the Phase 1 we do a separate search for
each of the candidate races. In the Phase 2 we do a search
based on the races found in Phase 2. For our benchmarks,
our experiments with Racageddon found 291 real races in
Phase 1 and 53 additional real races in Phase 2.

In Phase 1 we interleave calls to concolic and improve.
The idea is to turn the search for a race into a search for
a schedule that leads to the race. Each call to concolic will
produce a schedule that gets closer to execute the race, after
which a call to improve will further improve that schedule. In
more detail, each call to concolic will both try to execute the
given schedule and continue execution beyond that sched-
ule, typically until termination of the program. Part of the
continued execution may make progress towards the desired
race. The call to improve will permute some events in the
schedule to make the next concolic run have a better chance
to succeed. Notice that because improve is idempotent, we
apply improve just once.

In Phase 2 we consider each race found in Phase 1 and
do a swap of the two racing events in the schedule that
lead to the race. The “swapped” schedule leads to a race of
the same two events, which in itself provides nothing new.
The interesting aspect of the “swapped” schedule is that
a concolic execution will continue after the race and may
proceed in a different way than the execution in Phase 1.
Our experience is that those continued executions may find
races that Phase 1 missed. Once Phase 2 finds a new race,
we also do a swap of the schedule that led to that new race.

The alternation of improve and concolic steps is consid-
erably more powerful than either one alone. For our bench-
marks, our technique finds 344 races, while improve alone
(applied to the trace of an initial run) finds only 151 races,
and concolic alone finds only 47 races.

3.6 Racageddon Pseudo-code
Figure 1 shows pseudo-code for Racageddon. We will now
go over the pseudo-code in detail. We hope our pseudo-code
and explanation will enable a better understanding of the
approach and enable practitioners to implement Racageddon
easily.

The input to the Racageddon procedure is a program
while the output is a set of races. The first four lines of
Racageddon declares these four variables: (1) a set of race
candidates, called candidates, that we initialize by a call to
hybrid, (2) a set of races, called races, that initially is the
empty set and that we eventually return as the result of the
procedure, (3) a set of races, called r, that we use to hold
intermediate results, and (4) a schedule, called trace, that
holds each trace produced by concolic.

Phase 1 consists of a for-each-loop that tries each of the
event pairs in the set of candidates. For each event pair we
use a while-loop to do iterations that each does one call to
improve and one call to concolic. We use the integer variable
i to count the number of iterations and we bound i by 1000

(Race set) Racageddon(Program p) {
(EventPair set) candidates = hybrid(p)
(Race set) races = ∅
(Race set) r
Schedule trace

/* Phase 1: try the candidates */
for each EventPair c ∈ candidates do {

boolean done = false
int i = 0
traces = ε
while (¬ done) ∧ (i ≤ 1000) {

case improve(trace, c) of
Schedule s : {

(r, trace) = concolic(p, s)
races = races ] r
done = present(c, trace)

}
none : {done = true}

}
i = i+ 1

}
}

/* Phase 2: try swaps of the races */
(Race set) workset = swap(races)
for each Race (c, v, s) ∈ workset do {

(r, trace) = concolic(p, s)
races = races ] r
workset = workset ] swap(r)

}

return races
}

Figure 1. Racageddon.

to ensure that the search terminates, even if the search found
no races. In practice, the highest number of calls to improve
and concolic we did for any of our benchmarks was 197. So,
none of our experiments exercised the condition i ≤ 1000.
We initialize trace to the empty schedule, denoted by ε, such
that the initial call to improve can work correctly; that call
will return ε.

The while-loop uses a Boolean-variable done to keep
track of whether the search for a particular candidate can be
terminated before i reaches 1000. We have two reasons for
terminating the search early, which we do by setting done to
true. If the candidate pair c is present in the trace executed
by concolic, as found by the call present(e, trace), then we
can declare success and terminate the search. If the call to
improve(e, trace) returns none, then the search has stalled,
and we abandon the search. While abandoning a search may
seem sad, our experiments do it in some cases. One of the



reasons may be that the race candidate actually isn’t a real
race!

Notice how each iteration of the while-loop begins with
trace, improves it to a schedule s (unless improve returns
none), which then after execution of concolic turns into a
new value for trace.

Phase 2 is a workset algorithm that uses the variable
workset that holds a set of races. The workset variable
holds a set of races still to be processed. Initially workset
is the set of races found in Phase 1, but swapped, in the
sense that we now want to search for the “swapped” race.
The main part of Phase 2 is a for-each-loop that iterates
over the elements of workset. We use an advanced for-
each-loop that works correctly even if elements are added
to workset during a run of the for-each-loop. Here, “works
correctly” means that the for-each-loop does one iteration
per element of workset, even if an element is added to
workset multiple times or added after the execution of the
for-each-loop begins.

For each element of workset, Phase 2 makes one call
to concolic and collects any races that may be found. For
each new race found in Phase 2, we add the race to workset
such that we eventually can say that we tried the “swapped”
version of every race that we found.

3.7 Example
We now present an example in which we walk through a run
of Racageddon on this program with three shared variables
and two threads:

x,y,z are shared variables
z has an initial value received from user input

Thread 1: Thread 2:
l1: x = 6 l4: x = 2
l2: if (z>4) l5: if (z2 + 5 < x2)
l3: y = 5 l6: y = 3

We use these abbreviations for events: e1 = (1, l1), e2 =
(1, l2), e3 = (1, l3), e4 = (2, l4), e5 = (2, l5), e6 = (2, l6),

The call to hybrid produces two race candidates:

candidates = {(e1, e4), (e1, e5)}

Now we begin Phase 1 of Racageddon. Suppose the for-each
loop first considers the candidate (e1, e4).

Now we run the first iteration of the while-loop. Initially
trace is the empty schedule so improve returns the empty
schedule. Now we run concolic on the empty schedule. Sup-
pose that the initial random input, which becomes the values
of the shared variable z, is 0. Nondeterminism can lead to
several traces; suppose we get

trace = e1, e2, e4, e5

Notice here that we don’t get to e3 because the condition in
e2 fails due to 0 < 4, and we don’t get to e6 because the

condition in e5 fails due to z2 + 5 = 5 and x2 = 4 and
5 > 4.

Now we run the second iteration of the while-loop. First
we run improve on (e1, e4) and trace, which produces this
permutation of trace:

trace = e1, e4, e2, e5

Now we run concolic on trace, and like above, let us sup-
pose the initial random input leads to z = 0. The execution
of concolic finds the race for which we are searching, so we
can add that race to races:

races = { ((e1, e4), 0, (e1, e4, e2, e5)) }

Like above, we don’t get to execute e3 or e6; the conditions
in e2 and e5 fails for the same reasons as above.

Next the for-each-loop in Phase 1 considers the candidate
(e1, e5).

Now we run the first iteration of the while-loop. Let us
assume that this iteration proceeds like the first iteration for
(e1, e4) so we get:

trace = e1, e2, e4, e5

Now we run the second iteration of the while-loop. First
we run improve on (e1, e5) and trace, which produces this
permutation of trace:

trace = e4, e5, e1, e2

Notice that even though e5 and e1 occur consecutively,
we won’t terminate the search because we are looking for
(e1, e5). Now we run concolic on trace, and which leads to
an execution with this trace:

trace = e4, e5, e1, e2, e3

for which z had the initial value 10. (We skip the constraints
and merely note that they have solution 10, among other
solutions.) Note that trace contains e3 because the condition
in e2 succeeds due to 10 > 4.

Now we run the third iteration of the while-loop. First
we run improve on (e1, e5) and trace, which produces this
permutation of trace:

trace = e4, e1, e5, e2, e3

Next, the execution of concolic finds the race for which we
are searching, so we can add that race to races:

races = { ((e1, e4), 0, (e1, e4, e2, e5)),
((e1, e5), 10, (e4, e1, e5, e2, e3) }

We don’t get to execute e6 because the condition in e5 fails
due to z2 + 5 = 105 and x2 = 36 and 105 > 36.

Now the for-each-loop has processed both elements of the
set candidates, so we are done with Phase 1 and can move



Name LOC # threads Brief description
Sor 1270 5 A successive order-relaxation benchmark
TSP 713 10 Traveling Salesman Problem solver
Hedc 30K 10 A web-crawler application kernel
Elevator 2840 5 A real-time discrete event simulator
ArrayList 5866 26 ArrayList from java.util

TreeSet 7532 21 TreeSet from java.util

HashSet 7086 21 HashSet from java.util

Vector 709 10 Vector from java.util

RayTracer 1942 5 Measures the performance of a 3D raytracer
MolDyn 1351 5 N-Body code modeling dynamic
MonteCarlo 3619 4 A financial simulator, using Monte Carlo techniques to price products
Derby 1.6M 64 Apache RDBMS
Colt 110K 11 Open Source Libraries for High Performance Scientific and Technical Computing
ChordTest 62 11 Mini-benchmark; comes with the Chord race detector
Avrora 140K 6 AVR microcontroller simulator
Tomcat 535K 16 Tomcat Apache web application server
Batic 354K 5 Produces a number of Scalable Vector Graphics (SVG) images based on Apache Batic
Eclipse 1.2M 16 Non-GUI Eclipse IDE
FOP 21K 8 XSL-FO to PDF converter
H2 20K 16 Executes a JDBCbench-like in-memory benchmark
PMD 81K 4 Java Static Analyzer
Sunflow 108K 16 Tool for rendering image with raytracer
Xalan 355K 9 XML to HTML transformer
TOTAL 4587K

Figure 2. Our benchmarks.

on to Phase 2. Notice that we found both candidate races to
be real races.

In Phase 2 we consider swapped versions of the two races
found in Phase 1:

workset = { ((e4, e1), 0, (e4, e1, e2, e5)),
((e5, e1), 10, (e4, e5, e1, e2, e3) }

Let us here focus on the run with the schedule (e4, e1, e2, e5).
The call to concolic eventually executes (e4, e1, e2, e5, e3)
and collects these constraints:

x = 6 ∧ z > 4 ∧ z2 + 5 < x2

that have solution z = 5. The next concolic execution there-
fore executes (e4, e1, e2, e5, e3, e6), which contains the race
(e3, e6). We add that race to races:

races = { ((e1, e4), 0, (e1, e4, e2, e5)),
((e1, e5), 10, (e4, e1, e5, e2, e3),

((e3, e6), 5, (e4, e1, e2, e5, e3, e6)) }

In summary, hybrid produced two candidates races, Phase 1
found both candidates to be real races, and Phase 2 found
one additional race. The key reason why we detected the
additional race (e3, e6) is that the swapping of events lead
the concolic execution to a new program state that was not
previously reached.

4. Experimental Results
We use the Lime concolic execution engine; Lime is open
source, http://www.tcs.hut.fi/Software/lime. In
our implementation, events are at the Java bytecode level;
we use Soot [53] to instrument bytecodes. We ran all our
experiments on a Linux CentOs machine with two 2.4 GHz
Xeon quad core processors and 32 GB RAM.

4.1 Benchmarks
Figure 2 lists our 23 benchmarks which we have collected
from seven sources:

• From ETH Zurich [1, 54]: Sor, TSP, Hedc, Elevator.
• From java.util, Oracle’s JDK 1.4.2 [2–4, 36]: Ar-

rayList, TreeSet, HashSet, Vector.
• From Java Grande [5, 51]: RayTracer, MolDyn, Monte-

Carlo.
• From the Apache Software Foundation: [6, 25]: Derby.
• From European Org. for Nuclear Research (CERN) [4,

24]: Colt.
• From the Chord distribution [7]: ChordTest.
• From DaCapo [8, 12]: Avrora, Tomcat, Batic, Eclipse,

FOP, H2, PMD, Sunflow, Xalan.



The sizes of the benchmarks vary widely: we have 2 huge
(1M+ LOC), 10 large (20K–1M LOC), 8 medium (1K–8K
LOC), and 3 small (less than 1K LOC) benchmarks.

Figure 2 also lists the high watermark of how many
threads each benchmark runs.

4.2 Race Detectors
We compare Racageddon with one static race detector,
namely Chord [34], one hybrid race detector, namely the one
that we call Hybrid [35], and four dynamic race detectors,
namely FastTrack [23], Goldilocks [21], RaceFuzzer [47],
and Pacer [14]. Additionally we compare with a combined
dynamic technique that we call FGRP.

Chord is a static technique, and by design it may report
false positives; its main objective is to report all real races
(or as many as possible).

We discussed Hybrid in Section 2.
FastTrack, Goldilocks, RaceFuzzer, Pacer, and Racaged-

don are all dynamic techniques that report only real races.
FastTrack and Goldilocks are based on the observation

that a race happens if two accesses to a memory location (of
which at least one access is a write) are not ordered by the
happens-before relation. FastTrack uses a clever representa-
tion of the happens-before relation to achieve constant-time
overhead for almost all monitored operations. Goldilocks
uses a lockset-based algorithm to improve the precision of
the computation of the happens-before relation.

RaceFuzzer performs random testing by choosing thread
schedules at random and stopping a thread when it is about
to execute a statement in a candidate race pair. RaceFuzzer
and Racageddon have the following key similarities and
differences. The main similarity is that both use Hybrid
to generate race candidates and then they guide execution
towards those race candidates. The main difference is that
RaceFuzzer guides execution with a custom thread scheduler
that controls thread interleaving, while Racageddon 1) uses
the improve function get a better schedule ahead of execution
and 2) interleaves calls to improve and concolic.

Pacer is a sampling-based data race detector that detects
any race at a rate equal to the sampling rate. In our experi-
ments, the sampling race was 100% and for each benchmark
we used 100 trials. We used a sampling rate of 100% to make
Pacer report as many races as possible, even though perfor-
mance will be the slowest possible.

We use FGRP to stand for the union of FastTrack,
Goldilocks, RaceFuzzer, and Pacer in following sense. We
can implement FGRP as a tool that for a given benchmark
starts runs of FastTrack, Goldilocks, RaceFuzzer, and Pacer
in four separate threads, and if any one of them reports a
race, then FGRP reports a race.

We implemented Hybrid and RaceFuzzer ourselves ac-
cording to the published papers that describe them, while we
got the implementations of Chord, FastTrack, Goldilocks,
and Pacer from webpages and from their authors.

4.3 How we handle Reflection
Many of the benchmarks use reflection, yet each of the race
detectors listed above either doesn’t support reflection or
supports reflection poorly. We overcome this problem with a
the help of the tool chain TamiFlex [13].

The core of the problem is that all the race detectors do
either a static analysis or some form of ahead-of-time instru-
mentation. Reflection tends to make static analysis unsound
and to load uninstrumented classes. TamiFlex solves these
problems in a manner that is sound with respect to a set of
recorded program runs. If a later program run deviates from
the recorded runs, TamiFlex issues a warning.

We have combined each of the race detectors with Tami-
Flex and we have run all our experiments without warnings.
As a result, the race detectors all handle reflection correctly
and in the same way.

4.4 Race Siblings
The seven race detectors differ in how they report race sib-
lings. We define that two event pairs are siblings if they have
one event in common. Our versions of Hybrid and Race-
Fuzzer may report race siblings, and also Chord, Pacer, and
Racageddon may report race siblings. In contrast, FastTrack
and Goldilocks report only one of two siblings. Intuitively,
FastTrack and Goldilocks reports zero or one race per mem-
ory location, while the other race detectors may report mul-
tiple races per memory location. The reader should be aware
of this difference when reading the measurements below.

4.5 Measurements
Figure 3 shows the numbers of races found in 23 benchmarks
by Racageddon, including whether the races were found in
Phase 1 or in Phase 2.

Figure 4 shows, for each benchmark, the number of
schedules tried by Racageddon, the length of the longest
schedule that found a race, and the number of branches in
that longest schedule. One way to understand “the number
of branches” is as follows. Suppose, for a given benchmark,
we have the longest schedule that found a race and we want
to reconstruct the input that led to execution of that schedule.
We do that by first generating constraints from the branches
in the schedule, and then solving the constraints, which pro-
duces an input that will work. Figure 4 shows the number of
constraints that were generated in this manner.

Figure 5 shows the numbers of races found in 23 bench-
marks by 7 techniques.

Figure 6 shows the time each of the runs took in minutes
and seconds, and it shows the geometrical mean for each
technique.

Some of the executions of Goldilocks crashed, which we
indicate in Figure 5 and Figure 6 with “-”. If we compare
Figure 5 and Figure 6 we see that for ArrayList and Batic, we
list that Goldilocks reported races while we list no execution
times. The reason is that for ArrayList and Batic, our runs



Number of races found
Name Total = Phase 1 + Phase 2
Sor 3 2 1
TSP 2 2 0
Hedc 11 9 2
Elevator 8 5 3
ArrayList 7 7 0
TreeSet 3 3 0
HashSet 8 7 1
Vector 4 4 0
RayTracer 4 3 1
MolDyn 6 4 2
MonteCarlo 3 2 1
Derby 18 15 3
Colt 10 7 3
ChordTest 2 2 0
Avrora 13 12 1
Tomcat 21 19 2
Batic 29 23 6
Eclipse 51 46 5
FOP 18 16 2
H2 39 30 9
PMD 13 12 1
Sunflow 30 22 8
Xalan 41 39 2
TOTAL 344 291 53

Figure 3. Races found by Racageddon.

of Goldilocks crashed, yet the execution log contained some
races that we report in Figure 5.

Figure 7 shows, for each benchmark, the lengths of the
72 schedules that lead to races found only by Racageddon.

Figure 8 shows, for each benchmark, how many of the
races found by Hybrid are actually real races, as found by
the combination of FGRP and Racageddon.

4.6 Evaluation
We now present our findings based both on the measure-
ments listed above and on additional analysis of the races
that were found.

Racageddon. We can see in Figure 3 that Racageddon
found a total of 344 real races, including 291 races found in
Phase 1 and 53 races found in Phase 2. The split between
Phase 1 and Phase 2 demonstrates a subtlety of race directed
scheduling: even when we have a schedule that finds a race,
a swap of the race pair can lead to other races.

Number of schedules. We can see in Figure 4 that the
number of schedules tried by Racageddon is rather modest
and appears to be no worse than the product of a small
constant and the number of race candidates. Note that in
Racageddon, some runs of concolic finds multiple races. We
can also see in Figure 4 that the longest schedules that found

Name number of longest schedule
schedules length # branches

Sor 14 6,803 135
TSP 8 6,047 697
Hedc 28 249,268 4,084
Elevator 28 9,005 401
ArrayList 47 132,990 2,503
TreeSet 17 110,087 2,303
HashSet 38 139,553 2,979
Vector 40 6,308 108
RayTracer 9 71,084 520
MolDyn 188 4,680 362
MonteCarlo 24 12,061 994
Derby 105 108,302,900 39,103
Colt 63 948,033 9,418
ChordTest 2 505 10
Avrora 23 702,961 10,207
Tomcat 197 1,284,917 18,429
Batic 39 1,407,554 10,901
Eclipse 53 102,879,384 23,863
FOP 41 153,074 3,085
H2 35 297,655 7,310
PMD 48 310,049 7,201
Sunflow 37 1,624,320 8,821
Xalan 56 2,907,450 11,937

Figure 4. Schedules tried by Racageddon.

races can have lengths that are more than 100,000,000. This
shows that the improve method scales to long schedules.

Racageddon versus other Dynamic Techniques. We
can see in Figure 5 that Racageddon finds the most races
(344) of all the dynamic techniques. Among those 344 races,
72 races were found only by Racageddon and are entirely
novel to this paper, while 272 were also found by FGRP.
Dually, 32 races were found only by FGRP. In summary, we
have that the combination of FGRP and Racageddon found
376 races in the 23 benchmarks.

Found only by FGRP: 32
Found by both: 272
Found only by Racageddon: 72
Total: 376

Let us consider races that Racageddon found but FGRP
missed. One such race is a bug in Eclipse, specifically in
the class HudsonSecurityManager in the package org.

eclipse.hudson.security. The effect of the race is that a
plug-in may fail to load and that the user may have to restart
Eclipse.

Dually, let us consider races that FGRP found but that
Racageddon missed. One such race is in Derby, specifi-
cally in the class Connection in the package org/apache/
derby/client/am, where we find this code:



Static Hybrid Dynamic
benchmarks Chord Hybrid FastTrack Goldilocks RaceFuzzer Pacer FGRP Racageddon

total = new + FGRP
Sor 3 8 0 0 0 3 3 3 3 0
TSP 17 3 1 1 0 1 1 2 1 1
Hedc 143 5 3 1 1 11 11 11 4 7
Elevator 54 13 1 - 0 4 4 8 4 4
ArrayList 8 14 0 1 5 6 6 7 1 6
TreeSet 11 13 0 - 6 8 9 3 0 3
HashSet 0 11 0 - 8 7 8 8 0 8
Vector 17 9 0 - 5 5 5 4 0 4
RayTracer 159 2 1 1 1 3 3 4 1 3
MolDyn 92 43 0 1 2 5 5 6 1 5
MonteCarlo 101 5 0 0 1 2 2 3 1 2
Derby 1110 21 1 - 2 14 15 18 4 14
Colt 549 13 0 0 3 7 7 10 3 7
ChordTest 2 2 1 1 2 2 2 2 0 2
Avrora 1887 9 3 3 6 11 12 13 1 12
Tomcat 110061 52 12 11 11 20 20 21 3 18
Batic 970 12 9 10 9 32 35 29 7 22
Eclipse 9401 77 14 - 13 39 43 51 8 43
FOP 34 21 5 5 8 13 15 18 3 15
H2 869 19 5 - 9 25 26 39 13 26
PMD 292 14 9 8 4 13 13 13 0 13
Sunflow 353 16 8 11 9 19 21 30 11 19
Xalan 1003 23 6 9 10 36 38 41 3 38
TOTAL 127136 405 79 63 115 286 304 344 72 272

Figure 5. The numbers of races found in 23 benchmarks by 7 techniques.

public void accumulateWarning(SqlWarning e) {

if (warnings_ == null) {

warnings_ = e;

} else {

warnings_.setNextException(e);

}

}

public void clearWarningsX() throws SqlException {

warnings_ = null;

accumulated440ForMessageProcFailure_ = false;

accumulated444ForMessageProcFailure_ = false;

accumulatedSetReadOnlyWarning_ = false;

}

The accesses to warnings_ can form races. The effect of
the race may be a null-pointer exception, which can happen
in the following way. First a call to accumulateWarning

sets warnings_ to e, and then a call to clearWarningsX

sets warning_ to null, and finally the caller of the method
accumulateWarning gets a null-pointer exception.

Race siblings. Are the 72 races found only by Racaged-
don genuinely new or are they merely siblings of other races
found by Racageddon? As a step towards an answer to this

question, let us define

B = the 272 races found by both Racageddon and FGRP
R = the 72 races found only by Racageddon

In terms of B and R, the question is whether the races in R
have siblings in B or R. The answer is that 36 races in R
have no siblings at all, each of 28 races in R has a sibling
in B, and R contains 6 sibling pairs. Notice that the races
in two of the sibling pairs in R also have siblings in B. We
conclude that Racageddon finds 36+4 = 40 races that are
genuinely new and don’t have siblings among the other races
found by Racageddon.

FastTrack versus Pacer. Pacer is based on FastTrack and
as expected, every race found by FastTrack is also found
by Pacer. Pacer finds many more races (286) than FastTrack
(79) so our experiments confirm that Pacer is a highly worth-
while extension of FastTrack.

FGRP details. The combined dynamic technique FGRP
found 304 races. Pacer was the biggest contributor to that
collection of 304 races. Among those 304 races, Pacer found
286, some of which were also found by Goldilocks and
RaceFuzzer. The remaining 304-286=18 races were found
Goldilocks (10 races) and RaceFuzzer (8 races). In more
detail, Goldilocks found additional races in Avrora (1), Batic



Static Hybrid Dynamic
benchmarks Chord Hybrid FastTrack Goldilocks RaceFuzzer Pacer Racageddon
Sor 2:18 0:49 0:08 0:44 2:29 9:44 4:49
TSP 2:22 0:55 0:03 0:10 1:50 11:23 4:37
Hedc 4:07 1:00 0:08 0:25 2:01 5:00 3:08
Elevator 1:10 0:39 0:03 - 1:11 3:58 2:40
ArrayList 2:40 0:50 0:05 - 1:18 5:18 4:11
TreeSet 3:11 0:18 0:06 - 0:44 7:02 3:25
HashSet 2:58 0:21 0:06 - 0:59 4:57 2:43
Vector 0:43 0:15 0:01 - 0:38 5:05 2:52
RayTracer 1:24 0:09 0:03 0:38 0:26 4:18 2:22
MolDyn 0:38 1:42 0:02 1:08 2:49 15:36 6:45
MonteCarlo 2:31 2:02 0:04 1:16 4:01 16:31 6:58
Derby 35:09 1:26 0:13 - 1:50 11:34 5:02
Colt 4:37 0:04 0:10 0:23 0:09 4:48 2:23
Chord-Test 0:05 0:01 0:01 0:02 0:05 0:54 0:10
Avrora 19:37 2:40 0:39 4:57 3:19 23:03 11:17
Tomcat 12:01 3:57 0:41 4:11 6:01 45:12 19:00
Batic 27:29 3:01 0:18 - 3:55 30:01 14:54
Eclipse 41:11 3:50 0:35 - 4:14 48:46 19:15
FOP 6:50 0:17 0:12 0:36 0:25 13:21 4:49
H2 8:38 0:31 0:09 - 0:49 18:50 7:31
PMD 15:48 0:16 0:14 1:03 0:38 17:41 7:22
Sunflow 16:00 0:41 0:23 2:01 1:06 18:17 6:03
Xalan 33:11 2:39 0:20 3:00 3:47 30:37 13:19
geom. mean 4:36 0:40 0:08 - 1:16 10:41 4:51

Figure 6. Timings in minutes and seconds.

(3), FOP (2), SunFlow (2), and Xalan (2) (and RaceFuzzer
found none of those 10 races). RaceFuzzer found additional
races in TreeSet (1), HashSet (1), Derby (1), Eclipse (4),
and H2 (1) (and GoldiLocks found none of those 8 races).
We conclude that Goldilocks, RaceFuzzer, and Pacer are all
worthwhile techniques that each finds races that the other
techniques don’t find. As a combined dynamic technique
FGRP is highly powerful.

Chord. Chord is possibly the best current static race de-
tector, yet our experiments strongly suggest that Chord finds
a large number of false positives. We conclude that accurate
static race detection continues to be an open problem.

Timings. The geometrical means of the execution times
for each technique show that FastTrack and Hybrid are the
fastest, while Pacer is the slowest. Racageddon is more
than twice as fast as Pacer yet Racageddon finds signifi-
cantly more races. Note that the timings for RaceFuzzer and
Racageddon include the time to execute Hybrid. Note also
that we implemented RaceFuzzer ourselves in a rather un-
optimized fashion. As a result, our implementation of Race-
Fuzzer is significantly slower than FastTrack, while the pa-
per on RaceFuzzer [47] reported that the original implemen-
tation of RaceFuzzer is faster than FastTrack!

Rare races. Burckhardt, Kothari, Musuvathi, and Na-
garakatte [16] characterized the depth of a bug as the mini-

mum number of scheduling constraints required to find that
bug. In the spirit of their characterization, Figure 4 lists the
longest schedule that Racageddon used to find a race for
each benchmark, along with the number of branches in that
schedule. Six of those schedules have more than a million
events, including one schedule with more than 100 million
events. For 18 of those longest schedules, the result was that
Racageddon found a race that FGRP didn’t find. The excep-
tions are TSP, Elevator, Vector, MolDyn, and ChordTest, and
we notice that those five benchmarks have some of the short-
est “longest schedules” among the benchmarks.

Figure 7 lists the lengths of the 72 schedules that lead
to races found only by Racageddon. We can groups those
lengths as follows:

lengths #
103 − 104 9
104 − 105 4
105 − 106 28
106 − 107 22
107 − 108 6
108 − 109 3

The table shows that many of those schedules are long.
Specifically, 31 races were found with schedules that have



Name Lengths
Sor 6462, 6661, 6803
TSP 5623
Hedc 57327, 224341, 236804, 249268
Elevator 6573, 7924, 8673, 8914
ArrayList 132990
TreeSet -
HashSet -
Vector -
RayTracer 71084
MolDyn 4305
MonteCarlo 12061
Derby 58483566, 98555637, 105053813, 108302900
Colt 824877, 919592, 948033
ChordTest -
Avrora 702961
Tomcat 1066481, 1169274, 1284917
Batic 182982, 323737, 760003, 1379402, 1393478, 1400516, 1407554
Eclipse 1697703, 3068331, 3429715, 16605080, 16785570, 77145639, 98049000, 102879384
FOP 134705, 150499, 153074
H2 32742, 116085, 217288, 232170, 241100, 264912, 273842,

276819, 279795, 285748, 294678, 296133, 297655
PMD -
Sunflow 374598, 730944, 1283212, 1348185, 1478131, 1494379, 1543108, 1575594, 1608075, 1620019, 1624320
Xalan 2674854, 2849301, 2907450

Figure 7. The lengths of the 72 schedules that lead to races found only by Racageddon.

between 1 million and 108 million events, which suggests
that they are rare and hard-to-find races.

Hybrid. Both RaceFuzzer and Racageddon use Hybrid to
produce race candidates. RaceFuzzer focuses solely on the
race candidates, while Racageddon discovers additional race
candidates. Overall, Hybrid produces a worthwhile starting
point for those two dynamic techniques. We can see in Fig-
ure 8 that for our benchmarks, Hybrid reports 405 race can-
didates of which 238 (59%) are real races. Future work may
be able to show that some of the remaining 405-238=167
race candidates are real races.

5. Related Work
In Section 2 we discussed two techniques for race detection,
namely one by O’Callahan and Choi [35] and one by Said,
Wang, Yang, and Sakallah [41], that we use in Racageddon.
In Section 4 we discussed five additional techniques, namely
Chord [34], FastTrack [23], Goldilocks [21], RaceFuzzer
[47], and Pacer [14] that we have compared experimentally
with Racageddon. The goal of this section is to highlight
some other notable techniques and tools in the area of race
detection and related areas.

Predictive race detectors. The technique in the paper by
Said, Wang, Yang, and Sakallah [41] is an example of what
some authors call predictive techniques. The terminology
stems from that if a trace can be reordered into a trace that

leads to a deadlock, then the technique will do that. Smarag-
dakis et al. [50] presented a sound, predictive technique for
race detection that works in polynomial time. We can view
Smaragdakis et al.’s technique as an example of an improve
function. Both the improve function of Said et al. [41] and
by Smaragdakis et al. [50] are sound. So, we expect that if
we replace one with the other, we will find the same number
of races, and possibly faster. We leave experimental confir-
mation of this expectation to future work.

Swapping and flipping. Racageddon’s notion of event
swapping in Phase 2 is reminiscent of jCute’s notion of flip-
ping [48, 49]. While Racageddon simply swaps the order of
two consecutive events, jCute does something more radical:
it puts the second event in the position of the first event, and
then it delays the thread that executes the first event as long
as possible. We have found that a simple swap works well.

Dynamic race detectors. FastTrack, Goldilocks, Race-
Fuzzer, and Pacer were some of the best dynamic race de-
tectors for Java until now. A predecessor of Pacer, namely
LiteRace [33] was the seminal paper that showed how to do
race detection in a way that samples and analyzes selected
portions of a programs execution. Prior to LiteRace, a paper
by Jump, Blackburn, and McKinley [30] presented a sam-
pling technique that they applied in the context of memory
management.



Number of races
Name reported real
Sor 8 3
TSP 3 1
Hedc 5 5
Elevator 13 7
ArrayList 14 6
TreeSet 13 8
HashSet 11 7
Vector 9 4
RayTracer 2 2
MolDyn 43 5
MonteCarlo 5 3
Derby 21 17
Colt 13 9
ChordTest 2 2
Avrora 9 9
Tomcat 52 20
Batic 12 11
Eclipse 77 46
FOP 21 15
H2 19 17
PMD 14 12
Sunflow 16 6
Xalan 23 23
TOTAL 405 238

Figure 8. Hybrid; real = found by FGRP ∪ Racageddon.

Some well known dynamic race detectors work for other
languages than Java, including the seminal Eraser [44], and
a tool by Sack et al. [40].

Arnold and M. Vechev and E. Yahav [11] presented the
QVM run-time environment that continuously monitors an
execution and potentially detects defects, including races.

Hybrid race detectors. The technique by O’Callahan
and Choi [35] that we call Hybrid continues to be one of
the best and most scalable hybrid techniques for race detec-
tion. Other hybrid techniques include one by von Praun and
Gross [54], RaceTrack [56], and MultiRace [38]. We leave
to future work to do a large-scale study of those three hybrid
techniques like we did for Hybrid. In particular, future work
should evaluate how well those techniques perform when we
want to use their output as race candidates for other tools
such as RaceFuzzer and Racageddon.

Static race detectors. Chord remains one of the best
among the scalable static race detectors to date, hence it
was our choice for experimental comparison in this paper.
Among the other static race detectors, some use static anal-
ysis, including Warlock [52], RacerX [22], LockSmith [39],
and Relay [55], some use model checking, including an ap-
proach by Henzinger, Jhala, and Majumdar [29], and some
use type systems, including an approach based on owner-
ship by Boyapati, Lee, and Rinard [15], and approaches that

capture common synchronization patterns by Freund [26]
and later by Abadi, Flanagan, and Freund [9]. A related ap-
proach based on type systems by Sasturkar, Agarwal, Wang,
and Stoller [43] enables specification and check of atomic-
ity. Finally, Effinger-Dean, Boehm, Chakrabarti, and Joisha
[20] presented a characterization of extended interference-
free regions of C programs in which variables cannot be
modified by other threads. All the static approaches may pro-
duce false positives and thus have a goal that is dual to our
objective to find real races.

Other techniques. We implemented an early version of
Racageddon as an extension of Java PathFinder [28]. Our
Java PathFinder extension is effective at exploring all execu-
tion paths yet doesn’t scale up to our current benchmarks.

Collingbourne et al. [19] presented a sound analysis tech-
nique for GPU-oriented languages like OpenCL and CUDA,
which have concurrency models that are rather different
from Java. One of the applications of their technique is to
race detection. Intuitively, their main result is that a program
has a race if and only a modified version of the program has
a race when the threads are executed in lock step.

In the setting of distributed memory and distributed sys-
tems, Park et at. [37] presented a race detector for distributed
memory along with an implementation for UPC, and Sas-
nauskas et al. [42] presented a technique for symbolic exe-
cution of distributed systems.

6. Conclusion
Racageddon implements a new technique that we call race
directed scheduling. Our experiments show that race di-
rected scheduling is efficient and useful, and ultimately that
a combination of techniques is currently the best path to suc-
cessful race detection.

For a large benchmark suite, our tool Racageddon found
72 real races that were missed by earlier techniques, includ-
ing 31 races that were found with schedules that have be-
tween 1 million and 108 million events, which suggests that
they are rare and hard-to-find races.

Our experiments also show that a combination of the four
tools Goldilocks, Calfuzzer, Pacer, and Racageddon finds a
total of 376 real races in our benchmarks. As far as we know,
this is the most comprehensive list of real races for those
benchmarks that is reported in the literature.

Our experiments validates Hybrid [35] as an excellent
choice for producing race candidates. Across our bench-
marks, Hybrid produces at most 41% false positives.

Our technique is applicable beyond Java, particularly to
any language with a concurrency model based on threads
and locks. The main requirements are that (1) the technique
embodied in the Hybrid tool [35] applies, (2) the technique
embodied in the improve function [41] applies (3) concolic
execution [27] can be implemented. The main limitations of
Racageddon are due to limitations of the constraint solvers
used by concolic and improve.
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